
Int. J. Biomedical Engineering and Technology, Vol. 5, Nos. 2/3, 2011 211

Boundary element simulation of bone tissue

Vannessa Duarte*, Yomar González

and Miguel Cerrolaza

Instituto Nacional de Bioingeniería,
Universidad Central de Venezuela,
Ciudad Universitaria, Caracas, Venezuela
E-mail: vannessa.duarte@inabio.edu.ve
E-mail: yomar.gonzalez@inabio.edu.ve
E-mail: miguel.cerrolaza@inabio.edu.ve
*Corresponding author

Abstract: Usually the mechanical condition and the induced electric
signal are devoted to be part of the stimuli controlling the biophysical
activity associate with healing and remodelling phenomena. The tissue
differentiation theory proposed by Claes and Heigele (1999) has
been numerically implemented using an poroelastic boundary element
framework to characterises fracture healing, leading to a new poroelastic
correlation between mechanical conditions and local tissue formation.
This paper also presents the implementation of the piezoelectric boundary
integral equation to further study the bone tissue behaviour. The results
were in good agreement with those reported in previous works.
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1 Introduction

The computational mechanobiology has been widely used to describe the changes
in cell expression, the composition, structure and phenotype of bone tissues,
as a function of the applied mechanical stimuli. However, in the last decade,
other factors have also been incorporate to formulate a more generalised bone
response hypotheses, like locally expressed growth factors (Bailón-Plaza and
Van der Meulen, 2001), cell-to-cell interactions (Stains and Civitelli, 2005), drugs
release (Hernández et al., 2001; Zeman and Cerrolaza, 2005), osteoinductive
bone morphogenetic proteins (Blokhuis et al., 2001) and the piezoelectric effect
(Schmidt-Rohlfinga et al., 2002; Ramtani, 2008) among other.

Regardless of the case, the simulation of bone repair and remodelling is also
dependent of the applied numerical method capabilities (Finite Element Method,
FEM; Finite Difference Method, FDM; etc.). Recently, the Boundary Element
Method (BEM) has shown to be an effective alternative to the more familiar FEM
and FDM to predict the effect on biomechanical response of bone (Martínez et al.,
2006; González et al., 2009). The boundary scheme brings some advantages to
simulate the callus formation during bone healing. In that case, moving outward
surfaces, ossification paths and the calculation of the properties evolution are
usually defined as a function of only-boundary values, where the governing
differential equations are satisfied exactly.

1.1 Bone healing

Once a fracture occurs, a very complex process is auto-activated naturally to
repair the injury. Fracture healing involves the generation of intermediate tissues,
such as fibrous connective tissue, cartilage and woven bone, with different paths
being governed by a variety of stimulating agents like the mechanical environment,
hormonal and physiological patterns, geometric configuration of the fracture
fragments and growth factors (Lacroix et al., 2002).

We can differentiate between primary or secondary fracture healing. However,
in most cases, which involve moderate gap sizes and fracture stability, heals by
secondary fracture healing forming a voluminous callus. This type of healing
benefits from a certain amount of inter-fragmentary movement at the fracture site
and has a series of sequential stages than can overlap to a certain extent, including
inflammation, callus differentiation, ossification and remodelling. Bone ossification
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can occur mainly by endochondral and intramembranous ossification. In the first,
cartilage is formed, calcified and replaced by bone. In the second, bone is formed
directly by osteoblasts. As depicted in Figure 1, the process involves the coordinated
participation of migration, differentiation and proliferation of inflammatory cells,
angioblasts, fibroblasts, chondroblasts and osteoblasts.

Figure 1 The mesengenic process

Source: Caplan and Boyan (1994)

Healing begins as undifferentiated mesenchymal cells migrating from the
surrounding soft tissue to produce initial connective tissue around the fracture site.

Next stages, involve cartilage and bone tissue formation (Figure 2). Once the
callus is filled (mainly by cartilage), endochondral ossification begins following a
complex sequence of cellular events including cartilage maturation and degradation,
vascularity and osteogenesis (Figure 3). The ossification continues until all the
cartilage has been replaced by bone with sufficient stiffness. Last, remodelling of
the fracture site begins gradually in order to restore the original internal structure
and shape (Doblaré et al., 2004)

1.2 Boundary element approaches in bone modelling

Attempts have been made to use the BEM in the simulation of biological problems.
A few interesting works have been published illustrating the versatility of the
method in this area. The external bone remodelling model proposed by Martínez
et al. (2006) assumed that level of damage and the strain energy near the periosteum
and endosteum completely controls the process. BEM was used to evaluate the
displacements and tractions field and modify the geometry according to remodelling
law. Later, Annicchiarico et al. (2007) implemented smoothing techniques like
β-spline, to integrate the geometry in the boundary integral equation used to
simulate the external bone remodelling phenomena following the model proposed
by Martínez et al. (2006). Sfantos and Aliabadi (2007) proposed an alternative
boundary element formulation to simulate three-dimensional wear in artificial
hip joints. A parametric study of the wear evolution was carried out, including
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different update periods for the worn geometry of the acetabular cup, different
loading angles, different femoral head sizes and different materials combinations,
all under the same variable loading conditions based on the hip activity. Other
works include the application of BEM and genetic algorithms for cavity detection
in cortical bone, using a point load superposition technique (Ojeda et al., 2007,
2008). Gámez et al. (2007) presented an effective artificial sub-sectioning technique
with a region-by-region iterative algorithm for parallel computation for detection
of cracks in diaphysis sections of cortical bone.

Figure 2 Fracture healing process (http://www.bonestimulation.com)

Figure 3 Callus phenotype at day 9 after fracture. Notice the intramembranous
ossification process close to the periosteum and the chondrogenesis present in
most of fracture site (http://www.uwo.ca)
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2 Materials and methods

Bone is usually considered as a composite material with interconnected pores in the
elastic solid matrix (Papathanasopoulou et al., 2002; Lacroix and Prendergast, 2002;
Gómez et al., 2005; Isaksson et al., 2006; García et al., 2007). The recent multiphasic
porous models involved the solid osseous matrix, the extracellular fluid phase, the
osteoblastic cellular phase, the fluid velocity and the pore pressure promoting the
cellular activity. The bone matrix also exhibits piezoelectric properties strongly
associated with the fluid transport effect and the independent mass and charge
densities between the fluid and solid component (Ramtani, 2008). These parameters
help to further predict the constitutive response of bone even at cellular level. The
following attempts are mainly concerned with the development of suitable BEM
algorithms to study the bone behaviour from a poroelastic and piezoelectric point
of view.

2.1 Boundary element method for poroelastic media

The poroelastic code presented is part of BEM codes to establish a callus
growth model. It contains the axisymmetric fundamental solutions for steady-state
poroelastic problems in a linear-elastic, isotropic and non-homogeneous media,
following the Biot consolidation theory (Biot, 1956). The constitutive equations for
three-dimensional consolidation, written in the cartesian form are

(λ + µ)uj,ij + µui,jj − βp,i + fi = 0 (1)

kp,jj −
(

β2

λu − λ

)
ṗ − βu̇j,j + ψ = 0 (2)

where ui represents the displacement, p is the excess pore pressure, fi is the body
force per unit volumen and ψ is the time rate of volumetric fluid supply per unit
volumen.

Meanwhile, λ and µ are the drained Lamb-elastic constants, λu is the undrained
elastic modulus, k is the permeability and β is a function of B, called the
compressibility coefficient or Skempton pore pressure coefficient. The uncoupled
poroelastic boundary integral equation for axi-symmetric bodies, follows the matrix
form (3). The generalised quasi-static displacements and tractions are transformed
into a cylindrical coordinate system (r,φ,z) and then circuferential integration is
carried out (Balas et al., 1989; Dargush and Banerjee, 1991, 1992).
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P is the field point, Q is the integration point, Cαη(P ) is the free term, r(Q) is the
radial coordinate of Q, Ur and Uz are the displacements in radial and axial direction
respectively, θ is now called the excess pore pressure, Tr and Tz are the tractions in
radial and axial direction respectively. U∗

rr(P, Q), U∗
rz(P, Q), U∗

zr(P, Q), U∗
zz(P, Q),

T ∗
rr(P, Q), T ∗

rz(P, Q), T ∗
zr(P, Q) and T ∗

zz(P, Q) are the kernel fuctions identical
to those of axi-symmetric elastic displacements and tractions (Bakr and Fenner,
1983; Balas et al., 1989). Meanwhile U∗

θθ(P, Q) and T ∗
θθ(P, Q) are the potential

flow axi-symmetric kernels (Bakr and Fenner, 1983; Dargush and Banerjee, 1991).
U∗

rθ(P, Q), U∗
zθ(P, Q), T ∗

rθ(P, Q) and T ∗
zθ(P, Q) are the coupling terms (Dargush and

Banerjee, 1991, 1992). The remaining components are zero due to the uncoupled
theory considered.

The analytical kernels shown in equation (3) were taken from BEM quasi-static
and axi-symmetric thermoelastic and poroelastic approach (Bakr and Fenner, 1983;
Dargush and Banerjee, 1991; Brebbia and Domínguez, 2003; Dargush and Banerjee,
1992), as well as the asymptotic behaviour (Graciani et al., 2005).

2.2 BEM simulation of bony poroelastic media

Claes and Heigele (1999) developed a quantitative tissue differentiation theory
where strain and hydrostatic pressure fields along existing calcified pathways
(Figure 4(A)) determine the local tissue formation in a fracture gap. The study
compares the axisymmetric FE strains/stresses with histological findings to describe
progressive stiffening of the callus. A correlation between mechanical conditions
and phenotypes of five tissues types with differents elastic properties tissues
in a fracture callus was presented leading to a better understanding of when
intramembranous or endochondral ossification would occur (Figure 4(B)). The
course of interfragmentary movement (IFM) vs. healing time was also correlated.

This remarkable contribution was used as a reference to support the
methodology applied to obtain new results.

Starting from a 3D lineal-elastic BEM code (Beer, 2001), the pore pressure
was included into a stationary-poroelastic callus model, as a part of the stimuli
function to characterise the tissue phenotype and properties in callus site. These
boundary element (BEM) analysis allowed us to extend the observations made by
other authors and a new poroelastic correlation is proposed. In addition to earlier
quantitative theories, recent poroelastic models will be able to compare the tissue
properties evolution completely, such as the elastic moduli (E) and Poisson ratio
(ν), depending on both strain and pore pressure fields.

It is now clear that other factors influence the bone healing pattern, but the
underlying hypothesis in this work is that a combination of local strain and pore
pressure are the only stimuli to be considered.

The success of BEM algorithms was previosly established by showing that it can
correctly predict the response of well known analytical solutions for problems in
elasticity, thermoelasticity and poroelasticity as well (González et al., 2008, 2009).
Once the method proposed was tested, the uncoupled Biot linear consolidation
theory (Biot, 1956; Dargush and Banerjee, 1991) was implemented to simulate the
tissue differentiation process.
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Three different healing stages as depicted in Figure 5, with 3 mm of ostetomy
gap and 1.2 mm of initial interfragmentary movement (IFM) were considered for
the poroelastic BEM simulation, following the work done by Claes and Heigele
(1999).

Material properties as shown in Table 1 (details are shown in González et al.,
2009).

Figure 4 (A) Axi-symmetric simulation of the three healing stages considered and the
ossification paths: (a) 1 week p.o.; (b) 4 weeks p.o.; (c) 8 weeks p.o. and
(d)FEM model and boundary conditions. (OI)surface of intramembranous
ossification, (OE)surface of endochondral ossification and (B) mechanical
correlations proposed by Claes and Heigele (1999)

Figure 5 Axisymmetric bifasic boundary conditions at three healing stages: (a) 1 week;
(b) 4 weeks and (c) 8 weeks
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Table 1 Poroelastic properties: E (Youngs modulus), ν (drained Poissons ratio),  
Ks (drained modulus), Kf (undrained modulus), φ (porosity), k (hydraulic permeability;  
k = κµ), νu (undrained Poissons ratio), B (Skemptons modulus). (a) Claes and Heigele 
(1999); (b) Isaksson et al. (2006); (c) calculated using constitutive law 
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On the other hand, it has been suggested by several authors (Fukada and
Yasuda, 1957; Basset and Becker, 1962; Ramtani, 2008) that the piezoelectric
properties of bone play an important role in the development and growth
remodelling of the skeleton. According to this theory, applied stresses generate
local potential gradients along the collagen fibre which provide a local stimulus
for bone-generating cells (Basset and Becker, 1962; Becker et al., 1964; Ahn
and Grodzinskyc, 2009). Relying on the piezoelectric properties of natural bone
and their influence on the hastening of bone healing, the objective of the next
application is to simulate the electro-mechanical coupled behaviour of bone tissue
to a new imposed electrical field.

2.3 Boundary element method for piezoelectric media

The use of electrical stimulation as adjunctive therapy for injured bones dates
back to the 1700s (Fleischli and Lauglin, 1997). Electrical properties of bone are
relevant not only as an hypothesised feedback mechanism for bone adaptation and
remodelling, but also in the context of external electrical stimulation of bone in
order to aid its healing and repairing (Ramtani, 2008).

2.3.1 Constitutive equation

The constitutive equations of linear piezoelectricity are given by

Cijkluk,li + elijϕ,il = 0 (4)

eikluk,li − εilϕ,li = 0 (5)

in which Cijkl, eijk and εik are the elastic stiffness tensor, the piezoelectric tensor
and the dielectric permittivity tensor respectively. ui and ϕ,k are the displacements
and electric potential.

On the boundary Γ of a three dimensional piezoelectric body, the displacement
vector U and traction vector T are related by the boundary integral equation (6)
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2.3.2 Anisotropic piezoelectric materials

A characteristic of piezoelectric materials is its anisotropic behaviour, therefore the
matrix C is an anisotropic constitutive matrix. In case of bones, the piezoelectricity
appears only when the shearing force acts on the orientated collagen fibres so that
they slip past one another (Silva et al., 2001) and the matrix linking the stresses
and the electric field (piezoelectric matrix) is

e =


0 0 0 e123 e113 0

0 0 0 e113 −e123 0
e311 e311 e333 0 0 0


 . (7)

The matrix relating electric displacement to the field vector tensor εij is
perpendicular and parallel to the longitudinal-axis and is given by

ε =


ε11 0 0

0 ε11 0
0 0 ε33


 . (8)

The fundamental solution of the differential equation for unit values of load
and electric field can be derived using a Radon transformation (Thoeni, 2005;
Gaul et al., 2003). The fundamental solution in 3D for U∗

MK which combines the
displacements and the electric potential is given by

U∗
MK(r, θ1, θ2) =

1
r
Gu

MK(θ1, θ2), (9)

r is the distance between P and Q (length of vector r) and θ1, θ2 are determined
according to Figure 6, where r0 a unit vector in the direction r (Beer et al., 2008).
Because of the complexity of the fundamental solution, a scheme is adopted to
estimate and storage values of G as a function of θ1,θ2.

2.4 BEM simulation in a bony piezoelectric media

The corresponding anisotropic 3D fundamental solution were implement into a
general lineal-elastic BEM code (Beer, 2001) by changing and adding subroutines
(more details in Beer et al., 2008). The code was validated with the resulting
displacement solution given analytically by a normalised cube with the material
constants (Table 2) presented in Denda and Wang (2009).

Table 2 Approximate values of the femur material constantsa

e123 e113 e311 e333 C11 C12 C13 C33 C44 ε11 ε33

177.66 55.53 15.06 18.6 21.2 9.5 10.2 37.6 7.5 10 12

aeij are the piezoelectric coefficients in C/m2 × 10−5, Cij are the elastic constants in the
transversely isotropic case in GPa, εij are the dielectric coefficients in C/V m × 10−12.

Source: El-Naggar et al. (2001)

Bone apposition occurs in somewhat large amounts in response to a balanced
alternating pulsed current (Marino and Becker, 1970). The exact mechanism
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Figure 6 Calculation of angles θ1,θ2

Source: Thoeni (2005)

by which the potential stimulates the growth respond is unknown. However,
Gjelsvik (1973) presented a model based on four postulates: the signal for surface
remodelling is the piezoelectric polarisation vector normal to the surface, material
symmetry direction of new bone deposited follows the direction of the bone on
which it is growing, new surface bone is deposited so that no residual stresses result
and material symmetry direction tries to keep aligned with the time average of the
principal stress directions in the bone. This theory proposed by Gjelsvik (1973) is
using as a reference to support the methodology applied to obtain results by using
Boundary Element Method.

3 Preliminary results

3.1 Poroelastic BEM

3.1.1 Inter-fragmentary motion

Even if the bone fragments are stabilised, moderate axial movement in the range
of 0.2–1.0 mm in gap sizes of 3 mm are believed to promote optimal healing
in transverse osteotomies (Duda et al., 1998; Claes et al., 1998). For each model
(Figure 5) both the Inter-Fragmentary Displacement (IFM) and Inter-Fragmentary
Strain (IFS) were calculated (see Figure 7).

The inter-fragmentary movement is sensitive to the constitutive law and did not
reproduce the in vivo measurements (see Figure 7(a)). However the findings were
according to the range (0.2–1.0mm) proposed to be optimal for fracture healing.
Lacroix and Prendergast (2002) also studied the inter-fragmentary movement as a
function of boundary conditions and time healing. They showed similar values of
IFM. The differences are mostly due to the material properties used.
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3.1.2 Pore pressure along the ossification path

This section shows the calculated pore pressures (Ph) along the ossification paths
(see Figure 8). The origin was taken close to the periosteal surface as depicted
in Figure 4(A). The results are presented illustrating the type of ossification
(OI/OE) for each stage considered.

Figure 7 (a) Comparison of IFMs calculated through in vivo, FEM and BEM analyses
and (b) Comparison of IFSs calculated through FEM and BEM analyses

In Figure 8 the increasing of tissue stiffness is reproduced. The pore pressures were
high at the beginning where a progressive volume expansion associated with the
migration and differentiation of the osteoprogenitor cells is taking place. These
values become moderate through healing time.

Due to the initial instability of bone fragments, the pore pressure field suggested
appropriate conditions to promote ossification around the periosteum and in the
major part of the endosteum area. The high strain values also corroborate this
observation (details can be found in González et al., 2008, 2009). The cortical
gap exhibits high pressures under compression, stimulating bone formation by
endochondral process. These values become moderated toward the periosteal gap,
where granulation tissue is mostly found. In the beginning of fourth week, the
pressures along the new ossification path behave differently compared with the
hydrostatic pressures reported by Claes and Heigele (1999). Notice the increment
pressure values as we get closer to the periphereal callus area (see Figure 8).
At this point, a matrix formed by cartilage is mainly seen due to endochondral
ossification progress (Lacroix et al., 2002). However, the magnitudes of strains
(absolute value) were small enough to stimulate the formation of cartilaginous
tissue. Later, the cell differentiation process continues toward osteoclasts mostly
and a new volume expansion proceeds. As the endochondral and intramembranous
ossification paths find each other (Figure 5: stage b and c) and new tissues are
formed, the strains become lower and the pore pressure field tends to equilibrium
progressively (Figure 8).
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Figure 8 Stress poroelastic results along bony surfaces using boundary element method.
(OI) surface of intramembranous ossification, (OE) surface of endochondral
ossification

3.1.3 Proposed poroelastic correlation

Based on poroelastic-only constitutive law, a new correlation is proposed (Figure 9)
and a direct quantitative comparison of the mechanical environment is now
possible allowing a better understanding of the results reported by previous FEM
simulations. The basic procedure was to evaluate mainly the postprocessing BEM
data along the ossification paths for each stage considered, and to observe how
those magnitudes defined new ranges for each tissue type according with the
assumed hypothesis. The adjacent areas were also studied.

3.2 Piezoelectric BEM

3.2.1 BEM modelling of bone test specimen

In order to validate the computer code, we have considered a unit cubic bone
specimen (Figure 10) loaded (t3 = σ3 = 1 and t4 = D3 = 1 at z = 1) at one end and
fixed at the load-reacting end (uI = 0, I = 1, 2, 3, 4 at z = 0). A similar example was
shown by Denda and Wang (2009). According to Wolff’s law, bone is deposited
and reinforced at areas of large stress, which is correlated with results reported
by bone growth and healing simulations. The role of the collagen piezoelectricity
also influence the bone response producing the strain-generated potentials (Ahn and
Grodzinskyc, 2009). The example below seems to confirm the hypothesis when the
applied surface charge helps to promote areas where bone could be generated. The
results help to speculate how healing process could be slightly improved with the
application of charge (Figure 11). Qualitative, growth areas could be expected in
the top due to the negative potential distribution (Figure 12). These results agree
with Basset and Becker, 1962).
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Figure 9 New correlation between poroelastic mechanical conditions and tissue types.
Cartilaginous tissue was incorporated according to the Lacroix and
Prendergast’s findings

Figure 10 Discretised mesh of the cube with loading on the top (t3 = σ3 = 1 and
t4 = D3 = 1 at z = 1) and fixed at the bottom (uI = 0, I = 1, 2, 3, 4 at z = 0)

Figure 11 Displacement in the direction of the bone symmetry: (a) without charge and
(b) charge on the top
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Figure 12 Electric potential distribution: (a) without charge and (b) charge on the top

4 Conclusion

This work represents an important contribution in the application of Boundary
Element Method for biological problems. In particular, the capability for bone
healing axi-symmetric simulation in a poroelastic media to speculate the mechanical
environment during tissue differentiation process has been demonstrated.

Using a boundary framework we have characterised the phenotype tissues
involved into bone healing. The poroelastic study allowed to extend the
observations made by Claes and Heigele (1999) and a new poroelastic-only
correlation is proposed. Although the first results are promising, it is necessary to
evaluate this correlation with other experimental results.

The need to include transitory kernels into the boundary integral formulation,
as well as the cell diffusion analysis and moving boundary techniques is a key aspect
for future dynamic applications.

The exact mechanism by which the potential stimulates the growth respond
is unknown and experimental data remains poorly understood. However, the
literature available suggests that the induced potential through the bone could be
an efficient alternative to improve fractures repair. The preliminary results depicted
in Figures 11 and 12 are promising since areas for bone deposition arise from the
imposed surface of charge. This could be a simple and qualitative validation for the
electromechanical behaviour of the bone.
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